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1. INTRODUCTION

The United States Standard Light Rail Vehicle {(SLRV) is currently in producticon at the
Boeing Verio! Company for the Massachuseits Bay Transportation Authority and the San
Francisco Municipal Railway. In order to develop a data base for quaniitative compariscn
of the SLRV with other railcars and systems, testing was periormed at the Rail Transit Test
Track at Pueblo to the requirements of the TSC General Vehicle Test Plans (GSP-0684).

1.1 SLRV ENGINEERING TEST PROGRAM

The general objective of the SLRV engineering test program was to:

Establish a data baseline for the SLRV obtained in accordance with the General Vehicle
Test Plans

Provide further experience in the use of the General Vehicle Test Plans in testing Urban
Rail Vehicles

Conduct GSP-064 testing, when appropriate, in conjunction with ongoing qualification
testing to minimize cost of data collection

This report of the SLRV Engineering Tests is contained in four volumes:

Volume! Introduction
Volume Il Performange and Power Consumption Tests
Volume 11l Ride Quality, Noise, and Radio Fregquency Interference Tests

Volume !V Data Logs

1—1






- 2. RIDE ROUGHNESS TESTS

2.1 SUMMARY

Objective
The objective of the ride roughness tests was to determine the worst steady vibration level of
the Standard Light Rail Vehicle operating on the test track at Transportation Test Center,

Pueblao, Colorado. This data is for comparison with data recorded on other transit vehicles in
similar test circumstances.

Test Procedure

The test procedure used for the ride roughness testing was that specified in the General Vehicle
Test Plan (GVTP) Test Set R-1101-TT.

Test Sequence

The ride roughness testing, in accordance with the GV TP specification, was incorporated
intc Tests 53, 55, and 56 on the SFQQ02 vehicle as indicated in the following table:

TABLE Z—1. RIDE ROUGHNESS TESTING

Car Weight (Ib) ' Track Condition Test Number Record Numbers
77,840 (AW1) We!ded Rail/Concrete Tie b5 E— 12
82,500 (AW2) Welded Rail/Concrete Tie 58 1—12
100,945 (AW3) Welded Rail/Concrete Tie 53 2—-10
82,500 (AW2Z2) Jointed Rail/Wood Tie BB 17— 30

2.2 TEST DESCRIPTION

Ride guality data was recorded and collected at two car locations over a range of car speeds
and on two track sections. The locations were on the car floor cénterline over an end truck
and on the car floor centerline over the center truck in the articulation section. In each
locetion recordings were taken of vertical, lateral, and longitudinal accelerations.

2.3 INSTRUMENTATION

Gulton accelerometers, type LAO10265, were chosen for the vertical, lateral, and longitudinal
carbody vibration measurements due to both their linear measurement in the 0 to 40 Hz
frequency range and their sensitivity of = 1.5 g. Truck-mounted accelerometers used on
components between the secondary and primary suspension were Statham AB-5-350 devicss
which have a £ 5 g response frem 0 to 180 Hz.

The ride quality accelerometer lecations are noted as SA1-SAS in Table 2-2. The parameters
designated A-1 through A-E are located on truck components.

2—1
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2.4 TEST PROCEDURES

The ride quality vibration data was recorded on analog tapes and later analyzed to obtain
spectrum analysis and ride roughness curves. Spectrum analysis permits identification of
vibration contribution from modal characteristics of the car body structure.

Figure 2-1 shows a typical spectrum analysis curve of car body vertical vibration. These data
show that peak amplitudes occur in the frequency range below 2.0 Hz and are associated with
respanse from the rigid body pitch and vertical modes of the car body on the secondary sus-
pension. No significant response from the car body bending modes occurs because their natural
freguency is well above the maximum whese! rotational frequency. Appendix A contains the
complete presentation of all the spectrum analyses for the accelerations in three axes at two
locations.

The 18 Hz vertical vibration measured over the unpowered truck results from a local response
of the articulation floor coverplate. Measurements made adjacent to the articulation show
significantly lower levels.

The filter bandwidth for the spectrum analysis was 0.20 Hz in the 0 to 10 Hz range and 1.0
Hz for frequencies ebove 10 Hz.

The ride quality vibration data was further processed to produce the ride roughness data.
Ride roughness is a figure-of-merit to indicate the roughness of ride experienced by a typical
passenger on a moving transit vehicle.

The methodology Tor establishing this parameter is defined in GSP-064, General Vehicle Test
Plans for Urban Rail Transit Cars. The ride roughness number is determined by obtaining the
rms average of the time history for a 1-second interva! with the car body acceleration applied
through a system of weighting filters as supplied by TSC. The horizonta! and vertical signal
weighting networks specified are shown in Figures 2-2 and 2-3 respectively. ‘

2.5 TEST DATA

The effect of vehicle speed and weight on car body acceleration levels for two car weights
77,540 pounds (AW1) and 100,245 pounds (AW3) on welded rail/concrete tie is shown in
Figures 2-4 thru 2-8. Data presented are peak amplitudes at the predominant frequencies
identified from the narrow band analyses. ‘

Figure 2-10 compares SLRYV ride quality data to the goal for both latera! and vertica!
acceleration. Compliance with this goal is required at AW1 car weight. Center car vibrations
result from a local response of the articulation floor coverplate. These center and end car
data show that the vehicle meets the ride quality goal.

Figures 2-11 through 2-18 present ride roughnéss data at AW1 and AW3 carweighis at end-car
and mid-car locations. The overall low ride roughness numbers reflect the smooth vehicle ride
over the entire operating speed and weight range.
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3. NOISE TESTS
3.1 SUMMARY

Objective
The objective of the noise testing was to survey the interior and wayside noise levels of the

SLRV in both the MBTA and SFMR configurations in order to assess the acoustic environment
of the passenger inside the car as well as the contribution of the SLRV to community noise.

Procedures

The test procedures adopted for the noise surveys are those recommendsd by the General
Vehicle Test Plan for Urban Rail Transit Cars { Report Number UMTA-MA-06-0025-75-14,
September 1975). The following test sets were utilized: Equipment Noise Survey — Wayside,
Effect of Car Spesd on Wayside Noise, Effect of Speed — On Car, Interior Noise Survey,
Acceleration Effect — On Car, and Deceleration Effect — On Car.

Test Sequence

Wayside and interior noise surveys of the SFMR vehicle were conducted at the Transportation
Test Center, Pueblo, Colorado, on continuous welded rail {Track Section IV of the Transit
QOval). The noise survey of the MBTA vehicle was conducted on the MBTA’s Green Line on
at-grade track and contmuous welded rail.

Status

The SFMR noise surveys were made in February 1976 on cars SFO002 and SFO003. The tests
on the MBTA vehicle were conducted on car 3402 in Boston in June and August 1876. A
revision to the SFMR air comfort blower design speed was made afier tests were completed on
this vehicle. This revision results in lower interior noise levels for the SFMR vehicle than those
identified by this repori. Tests have not been conducted on the SFMR vehlcle in this final
configuration. :

3.2 WAYSIDE NOISE TEST DESCRIPTION

A noise survey was conducted on vehicles representing both the SFMR and MBTA configurations.
Data on the SFMR car was obtained at the Transportation Test Center, Pueblo, and for the
MBTA configuration, date was taken on the MBTA's Green Line near the Riverside Station in
Newton, Mass. :

The test area at the Transportation Test Center is known as Track Section |V, and for wayside
noise measurements, the survey was conducted adjacent to tangent track. The track consists
of 118-pound continuous!y welded rails set on concrete ties imbedded in stone ballast and
spaced at 30 inches. The microphones were located opposite station 369, approximately mid-
way in the tangent portion of Section |V which is 8,000 feet in length. There is a 0.7 percent
upgrade in the northbound direction (see Figure 3-1).

The test region on the MBTA Green Line was a section of track near the Riverside terminal.
The right-of-way in this area was bordered by a golf course which presented grassy terrain

between the track and the microphone.
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VIEW NORTHBOUND

VIEW SOUTHBOUND

Figure 3—1. Track Section IV Used for Noise Survey



The track consisted of 115-pound continuously welded rails set on timber ties spaced at
inches imbedded in stone ballast. For the passby noise survey, the car moved past the micro-
phone in the same direction for all speeds.

The wayside noise survey Included measurerents of undercar equipment operating individually
with the microphone positioned at the center of the stopped car, located at a distance of 50 feet
from the track centerline and 4 feet above top-of-rail.

For the wayside passby noise surveys, the microphone was also at a distance of 50 feet from
the track centerline and at a height of 4 feet above top-of-rail.

Ambient noise levels were, in al! cases, 10 dB or more below the equipment or car noise being
measured.

Figure 3-2 is a plan view of the SLRV showing the location of the undercar equipment items
surveyed, :

3.3 INSTRUMENTATION

A portable microphone/recorder data systern was used to survey noise levels of the SLRV in
both the MBTA and SFMR configurations. The instrumentation consisted of 1/2-inch condenser
microphones and 1/4-inch magnetic tape recorders. Figure 3-3 is a block diagram of the

data acquisition and reduction systems. Acquisition system A was used for the recording of

gl data with the exception of the SFMR wayside passby survey of two cars. For this test

systern B was employed. The record/playback system characteristics were similar for both
recording systems over the freqguency range of 50—100 kHz. During a!l tests, & sound level

meter was used to document A-weighted sound levels at the same logations as the taps
recordings.

Calibration

The recorders were calibrated prior to testing using a swept freguency sinusocidal insert voltage
over the range 20 Hz to 20 kHz. The entire record/reproduce systern frequency response,
including the rnicrophone; was evaluated during this calibration, with the microphone

diaphragm actuated electro-statically. During field tests, a known signa! (e.g., 94 dB at 1,000 Hz)
was recorded on each tape to establish system sensitivity and e reference level.

Systern Accuracy

The frequency response of the 2-channe! noise recording system had an electrical frequency
response linearity as shown in Figure 3-4 for a range of signa! voliage levels corresponding to
input sound levels of 50 dB to 120 dB &t the microphone.

The frequency response characteristics of Channel 2 of the NAGRA 1V when operated at
3-3/4 ips accentuate sound levels at frequencies above 2 kHz, The correction shown in
Table 3-1 should be applied to all data recorded on this channel as noted. Data recorded
on this channe! is identified in the applicable figure or table.
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TABLE 3—1. CORRECTION FOR CHANNEL 2 DATA

2,000
And Below 2,600 3,150 4,000 5000 6300 8000 10,000 Frequency
0 -1 -1.5 -2 =25 -3 ~25 0 dB

' Correction

The total harmonic distortion of the assembled noise measurement and recording equipment did
not exceed four percent over the measurement dynamic range.

The single channel NAGRA 11l has frequency response and harmonic distortion characteristics
similar to Channel 1 of the NAGRA 1V system.

The Boeing Vertol Company operates a Calibration/Certification Laboratory to insure mainten-
ance of instrumentation standards traceable to the National Bureau of Standards. Analyzer
characteristics such as filter bandwidths and microphone calibrators are checked twice yearly.
Frequency response characteristics of recording systems are typically run prior to each test
program.

Data Reduction

The basic analysis of all data recorded during the program consists of a frequency analysis
using an A-weighting filter. For reduction of data where a graphic level recorder was used,
such as wayside and interior time histories, the level recorder was set at control positions which
reproduced sound level meter readings set on the slow scale.

All steady-state data points have been analyzed using real-time digital processing and are
presented both as one-third-octave band and narrow-band spectra. The data presented in one-
third-octave spectra represent rms levels which have been integrated over sampling times of at
lease 8 seconds, and frequency 16 seconds. The sampling times are presented on each chart.
Where one-third-octave band analyses were performed, the A-weighted level was determined by
the analyzer during the same processing time. Therefore, all steady-state A-weighted sound
levels reported correspond to the identical sampling periods as for one-third-octave analysis.
A-weighted sound levels reported for wayside passbys are instantaneous maximum values
determined from the graphic level recorder time histories.

The narrow-band frequency spectra presented in this report were analyzed over several frequency
ranges in order to display each acoustic signature with a useful spectral resolution. The frequency
ranges selected for narrow-band analysis were 0 to 1,000 Hz, O to 2,000 Hz, 0 to 5,000 Hz, and
00 10,000 Hz. | '

The frequency analyses presented are not instantaneous spectra but the average of 32 samples
analyzed from the magnetic tape record. When averaged over many samples, the frequency
components which are random with time tend to cancel and the resulting averaged spectra
represent the continuous noise environment for the particular operating conditions. The effect
which this averaging technique has on data is shown in Figure 3-5. The unaveraged data is an
instantaneous snapshot of one sample, and the averaged data has been summed over 32 samples.
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UNAVERAGED DATA

SOUND PRESSURE LEVEL (dB)

FREQUENCY (Hz)

DATA AVERAGED OVER 32 SAMPLES

SOUND PRESSURE LEVEL (dB)

. FREQUENCY (Hz) 2,600

SFMIR INTERIOR NOISE, POSITION g, 40 MPH
ALL SYSTEMS ON

Figure 3—5. Comparison of Averaged and Unaveraged Narrow-band Spectra



The analysis time for each sample, 7, is then related to the filter band-width § by,

1
T=—

g

The filter bandwidth and sampling time for each frequency range selected for data reduction
are shown in Table 3-2.

TABLE 3—2. FREQUENCY RANGE, BANDWIDTHS, AND SAMPLING TIMES

Frequency Range (Hz) 0-1,000 02,000 0-5,000 0-10,000
Filter Bandwidth (Hz) 2 4 10 20
Single Sample Time (sec) 0.5 0.25 G.1 0.05
Time for 32 Samples {sec) 16 8 3.2 1.6

3.4 WAYSIDE NOISE TEST PROCEDURES

Equipment Noise Survey, Wayside Noise, CN-0001-TT

The equipment noise survey was conducted on MBTA Car No, 3402 at the Riverside test
location on August 19, 1976. The noise of the SLRV is essentially uniform with regard to
right and left sides of the car, and for this survey the microphone was on the left side of the
car, as determined from the A end operator’s seat. When positioned for minimum reflection
from far-field objects, the SLRV was centered over a macadam crosswalk hetween tracks
which was approximately 10 feet wide. |t is expected that this hard-surfaced walkway contrib-
uted to sound levels which were increased by perhaps 1—2 dBa over those which would have
been measured with the equipment over ballast and tie track. This comment applies to the
equipment cooling blower and the A-unit air conditioner only. Other items of undercar
equipment were above ballast and tie track. No correction has been made to the data to
account for the crosswalk reflection.

The following noise data were recorded during this test for a minimum of 15 seconds:

Acoustical Ambient

Brake Air Compressor (130—150 psi)

Equipment Cooling Blowers

Traction Mator Blowers

A-Unit Air Conditioner (both cylinders of the 2-cylinder compressor were operating)

Effect of Car Speed on Wayside Noise, CN-1001-TT

Wayside passby noise surveys were conducted on both the air-conditioned and non-air-conditioned
cars. The air-conditioned car survey was conducted on Car No. 3402 near the Riverside station

on August 19, 1976. The passbys were run with the A-end leading for each speed evaluated.

All normal car systems were operating for these records. The test vehicle was at AWO.

The non-air-conditioned car was surveyed at the Transportation Test Center, Pueblo, on
February 17, 1978. For this test, noise levels of the car were measured for both directions of
travel on the track. All systems were operating on the car (SF0002). Testing was conducted
at both AWO and AW3.
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Data for the two-car train also were obtained at the Transportation Test Center. For this fest,
cars SFO002 and SFO003 were coupled and data recorded for passbys on both sides of the car.
Both cars were at AWO weight for this test.

For each passby, the vehicle was accelerated to test speed and held to this speed for at least
10 seconds prior to and after passing the microghone.

3.5 WAYSIDE NOISE TEST DATA

See Table 3-3 and Figures 3-6 through 3-12.

3.6 INTERIOR NOISE TEST DESCRIPTION

The on-car noise survey was conducted on both the SFMR and MBTA configuration vehicles.
Datz on the SFMR car was obtained at the Transportation Test Center, Pueblo, Colorado, and
for the MBTA configuration data was taken on the MBTA's Green Line between Riverside and
Fenway Park on at-grade track.

The test section at the Transportation Test Center is known as Track Section 1V and consists
of 118-pound continuously welded rail set on concrete ties in stone ballast. Thereisa 0.7
percent upgrade in the northbound direction. Power was supplied by the overhead catenary.
The test area on the MBTA Green Line was the at-grade section of the ling, approximately

9 miles in length, between Riverside and Fenway Park stations. Data was taken on the
tangent track sections free of special trackwork or way structures, during both inbound and
outbound running. ‘

Interior data was surveyed at locations representative of both seated and standing DESSENgers
as well as at operator's seat ear level. The hieight of the microphone for seated locations was
1.4 meters and for standing ear leve!, 1.6 meters above floor height. Figure 3-13 illustrates
the microphone locations within the car for both the SFMR and MBTA configurations.

Wheels on all cars were smooth, with no slid flats visible or audible. A clear, dry atmosphere
existed for all testing.

The noise survey in the SFMR vehicle (Figure 3-14} was conducted on an early production
SLRV for San Francisco in February 1976. The SFMR vehicle does not include an air
conditioning unit, but uses a two-speed overhead blower system to provide for interior

cooling and heating. The early production cars were designed tc a specification which

required an airflow of 6,000 cfm for cooling and 3,000 c¢fm for heating. The cooling flow of
6,000 ¢fm later was determined to be unacceptably high and a revised airflow schedule was
designed for the SFMR car after the vehicles returned from the Pueblo test center. The new
schedule reduces interior noise by reducing the airflows to 4,200 ¢fm for cooling and 2,100 cfm
for heating. The impact of this new blower schedule on interior noise has not been documented
in detail to date, as revised production schedules do not require building or delivery of SFMR
vehicles until 9 months after the time of writing. However, preliminary measurements on a
developmental car indicate that maximum noise levels with high speed blowers are reduced
from 75 dBa to 70 dBa during car static conditions. Thus, data reported in the following
section are more severe than will be experienced in any production SFMR car which will operate
in San Francisco.
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3.7 INTERIOR NOISE TEST INSTRUMENTATIQN

The same instrumentation was used for interior noise testing as for the wayside noise testing
(see Section 3.3}

3.8 INTERIOR NOISE TEST PROCEDURES

Effect of Speed — On Car, PN-1001-TT

The interior survey to determine the effect of speed on noise in the passenger and operator
areas of the SLRV was conducted on an MBTA vehicle (Car 3402) and an SFMR vehicle
(SF0002). Both cars were at a weight of AWO0. Four locations in one-half of the car were
‘surveyed along the centerline of the car. These locations (see Figure 3-13) were the
operator’s seat (Position 1), over the powered truck {Position 5}, at the centerline between
side doors (Position 8), and in the articulated section (Paosition 12). Microphone height was
at seated ear level at the operator’s seat and at standing ear level for other positions. A
minimum of 15 seconds of data was recorded at each location for each speed. All systems
were on for the survey including the air conditioner for the MBTA tests and the overhead
blowers {on high?) for the SFMR test.

Interior Noise Survey, PN-1301-TT

The interior noise survey was conducted in the SFMR vehicle (SF0002) at AWO and a speed
of 40 mph to determine variations in noise in the longitudinal, lateral, and vertical directions,
The longitudinal survey included the following locations: (See Figure 3-13) Positions 1, 2, 3,
4,5,86,7,9, and 12. The lateral survey included all seats at Position 6. The vertical survey
was conducted at a position in the forward section of the car under the air comfort system
distribution diffusers. The three heights surveyed included, 1 foot from the ceiling, seated
ear level, and 1 foot from the floor.

Acceleration Effect — On Car, PN-2001-TT

Time histories of interior noise were taken during acceleration of the SLRV from 0—20 mph
and from 0—50 mph. The rate of acceleration produced a car speed of 20 mph in approximately
13 seconds, and a speed of 50 mph in approximately 40 seconds. These rates average 1.5 mph/
sec and 1.25 mph/sec, respectively. The time histories were recorded at car locations 5 and 8
(see Figure 3-57).

Deceleration Effect — On Car, PN-3001-TT

Time histories of interior noise were taken during deceleration of the SLRV from 20—0 mph and
from 50--0 mph. The deceleration rates were approximately 2 mph/sec and 2.5 mph/sec,
respectively. The time histories were recorded at car locations 5 and 8 (see Figure 3-58).

3.9 INTERIOR NOISE TEST DATA

See Table 3-4 and Figures 3-15 through 3-58.
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Figure_3— 74. Interior of SLRV in SFMR Corifiguratiori — Noise Survey Vehicle
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Figure 3—56. SLRV Interior Noise, Position 8, Centerline Between Doors
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4. RADIO FREQUENCY INTERFERENCE

4.1 SUMMARY
Objective

The test objective was to measure the broadband radiated electromagnetic emissions from the
MBTA and SFMR Standard Light Rail Vehicles. Fifty-foot and one-hundred foot wayside
emission data were obtained for comparison with the radio frequency interference limits es-
tablished for the SLRV. '

Procedure

The test procedures for measurement of E-field radiated emissions were generally those es-
tablished in Military Standards 461 and 462 for Method REQZ (14 kHz to 10 gHz), which
encompass the procedures laid dewn in the GVTP sequence PSI-6001-TT.

Test Sequence

Fifty-foot wayside tests were run for MBTA Car Number 002 at each of the 13 car operating
conditions with instrumentation set up to take measurements across a given frequency band.
Each of the 10 frequency bands (described in Section 4.3} was sequenced through in this
manner. The above procedure was then repeated with the measurement antennaf(s) set up 100
feet from the track centerline. The whole series of runs was then duplicated for SFMR Car
Number 003,

Siatus

The SLRV radio freguency interference tests were conducted during the period April 7
through May 8, 19786, at the DOT TTC facility in Pueblo, Colorado.

Wayside tests were performed under ambient conditions and for various operating states {i.e.,
maximum acceleration above and below base speed, constant speeds of 10, 20, 35, and 50
mph, and full service braking from 50, 35, 20 and 10 mph). The MBTA car was tested at AWQ
weight and the SFMR car at AW3. More than 490 test cases were run. ’

There was no substantial difference in the results abtained with the two different car configura-
tions. The electric field emissions at a wayside distance of 100 feet were within the limiis es-
teblished for the SLRV over the entire test frequency range from 14 kHz to 600 MHz. Figure
4-1 indicates the peak noise values measured at the various aperating conditions for both the
50-foot and 100-foot wayside measurements.

4.2 TEST DESCRIPTION

Wayside E-field intensity measurements were obtained far the operating conditions listed in

Table 4-1. The operating states are identified by the test condition numbers referred to in
Figures 4-5 through 4-12.
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TABLE 4—1. RFI TEST CONDITIONS

' , fdentification Nurnber
Opgerating State BO-Ft Wayside 100-Ft Wayside
Ambient Check, All Systemns Off 1 14
Armbient Check, Traction System On 2 1%
Ambient Check, All Systems On 3 16
Constant Speed, 20 mph 4 17
Constant Speed, 35 mph 5 18
Constant Speed, 60 mph 3] 19
Maximum Acceleration, Below Base Speed 7 20
Maximum Acceleration, Above Base Spesd 8 21
Full Service Braking, Starting &t 50 mph 9 22
Full Service Braking, Starting at 35 mph i0 23
Full Service Braking, Starting at 20 mph 11 24
Constant Spesd, 10 mph 12 —
Full Service Braking, Starting at 10 mph 13 —

The type of spectrum analysis equipment used in thése tests made it unnecessary to scan the
frequency rangs and select specific frequencies for monitoring. Hewlett-Packard 8550 series
" equipment was used, which provided a continuous frequency scan CRT presentation across a
defined frequency band. Thus, it was only necessary to configure the spectrum analyzer and
set up the proper antenna to cbtain an indication of all noise peaks existing in a particular
frequency band. ‘

A location just north of Station 280 on the TTC transit oval was selected for the wayside sta-
tion. The antennas were situated on the inside of the loop, as shown in Figure 4-2. This lo-
cation was chosen because the land was relatively flat and slightly above track grade at a 50- to
100-foot setback from the track.

4.3 TEST INSTRUMENTATION

The E-field measurement system comprised Hewlett-Packard spectrum analyzer equipment and
a series of antennas appropriate to the frequency ranges involved. The spectrum analysis
hardware included:

Tuning section, Model 8553B (1.0 kHz to 110 MHz)
Tuning section, Model 85541 (0.5 MHz to 1250 MHz)
1F section, Model 8552B

Dispiay section, Mode! 141T

4-3
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Figure 4-2. Location of RFI Wayside Station



The antennas and corresponding frequency ranges were:
Empire Devices Mode! VR-105 rod antenna (14 kHz to 30 MHz)
Electro-Mechanics Company Model 3104 biconicat antenna (20 to 200 MHz)
Electro-Mechanics Company Maode! 3101, conical log spiral antenna (200 to 1000 MHz)

The frequency bands as defined in Hewleti-Packard application Note 142, EMI Measurement
Procedure, are:

A 14 kHz to 100 kHz
B 100 kHz to 150 kHz
C 180 kHz +to 360 kHz
D 360 kHz to 870 kHz
E 870 kHz 1o 2.1 MHz
F 21 MHz to 5.2 MHz
G 52 MHz to 12.7 MHz
H 127 MHz to 30 MHz
| 30 MHz to 200 MHz
J 200 MHz to 600 MHz

These are the bands for which the spectrum analvzer was set up and at which each of the test
operating conditions was run.

For maximum coupling with vehicle emissions, the rod antennas were oriented vertically, the
biconical antenna longitudinally, and the conical log spiral antenna laterally. A typical rod
antenna installation is shown in Figure 4-3. '

An oscilloscope camera, using Polaroid 107 filrn, was mounted on the spectrum analyzer dis-
play unit, and the display was recorded during each test condition. Thus, the raw data com-
prises photographs of the spectrum analyzer display, as shown in Figure 4-4.

4.4 TEST PROCEDURES

The data reduction procedures can be understood by considering how the data points in
Figures 4-5 through 4-12 are derived from the spectrum analyzer display in Figure 4-4, which
was recorded during maximum acceleration above base speed (condition 8} over the frequency
range of O to 200 MHz. In this frequency range, the maximurmn emission peaks were recorded
during condition 8. The peak shown at 30 MHz is an internal reference signal from the speec-
trum analyzer. The peaks shown between 100 and 130 MHz appeared on the record of con-
dition 1 {reference ambient check) as well and are to be ignored (e.g., commercial broadcast
frequencies). The pesks of —66 dB at 81 MHz and —62 dB at 94 MHz are significant data
points.

The basic calibration of the display is given in the Hewlett-Packard application note, as shown
in Figure 4-13. The basic broadband calibration shown in Figure 4-13 must be corrected twice.
First, +26 dB must be added because no preamplifier was used. Second, the antenna factor
must be added. The antenna factor represents the ratio of measured field intensity (in V/m}

4-5



to potential at the antenna terminals {in V); it is expressed in dB/m. Adding the antenna
factor {dB/m) to the basic broadband units shown in Figure 4-13 (dB/uV/MHz) yields the
desired specification units of dB/uV/m/MHz,

In the frequency range of 20 to 200 MHz, the biconical antenna was used. Antenna factor data
for the specific antenna used in this test are shown in Table 4-2. The antenna factor varies with
frequency between 8.1 and 18.5 dB/m; at 40 MHz, it is 14. Thus, the broadband grid line
marked 21 dB in Figure 4-13 becomes 61 dB (21 + 26 + 14) at 40 MHz, Other points on the
61 dB reference line are plotted in Figure 4-13. The two data points are also identified, At

81 MHz, —66 falls 11 dB below the 61 dB reference line; that is, 50 dB. Similarly, —62 at 94
MHz is determined to be 56 dB/uV/m/MHz.

4.5 TEST DATA

Since no substantial differences were noted between the raw data measurements taken for the
MBTA and SFMR cars, rigorous data reduction was undertaken for the MBTA vehicle only.

The ability of the Hewlett-Packard spectrum analysis equipment to record E-field emissions
across a given frequency band on a continuous basis made it more appropriate to present the
noise peak data on log frequency plots rather than in a table format. This provides a more
complete picture of the noise spectrum than is available by monitoring discrete frequencies
only.

Corrected noise peak data has been plotted for each of the test operating conditions {13 con-
ditions for the 50-foot wayside and 10 conditions for the 100-foot wayside). These plots are
presented as Figures 4-5 through 4-8 for the 50-foot wayside and Figures 4-9 through 4-12 for
the 100-foot wayside. The traces for each car operating state are identified by the test con-
dition numbers. The specification limit established for the SLRV E-fietd emissions is included
on each of the figures for reference purposes. Gaps which appear in the plots indicate ranges
throughout which no significant noise peaks were recorded (i.e., no peaks greather than 76 dB
as read on the spectrum analyzer CRT display).
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TABLE 4—2. BICONICAL ANTENNA DATA

Frequency {MHz) Gain Antenna Factor * {dB)
20 0.03 11.0
30 0.06 11.8
40 0.07 14.0
50 0.15 12,5
60 0.56 8.3
70 0.74 8.5
80 1.06 8.1
90 0.95 9.6

100 0.47 13.56
110 0.33 15.9
120 0.71 13.3
130 0.97 12.7
140 0.93 13.5
150 0.79 14~
160 0.84 15.1
170 0.67 17.3
180 0.85 16.1
190 0.56 18.3
200 0.59 18.56

* Specification Compliance Testing Factor (1.0 meter spacing) to be added
to receiver meter reading in dBuv to convert to field intensity in dBuv/meter.
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APPENDIX A

RIDE QUALITY

NARROW-BAND SPECTRUM ANALYSES
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Figure A—1. Narrow-Band Spectrum Analysis — End Car, Vertical
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Figure A—2. Narrow-Band Spectrurm Analysis — End Car, Lateraf
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Figure A—3. Narrow-Band Spectrum Analysis — End Car, Longitudinal
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Figure A—4. Narrow-Band Spectrum Analysis — Mid Car, Vertical
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Frgure A—6. Narrow-Band Spectrum Analysis — End Car, Vertical
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Figure A—7. Narrow-Band Spectrum Analysis — End Car, Lateral
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Figure A—9. Narrow-Band Spectrum Analysis — Mid Car, Vertical
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Figure A—10. Narrow-Band Spectrum Analysis — Mid Car, Lateral
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Figure A—13. Narrow-Band Spectrum Analysis — End Car, Longitudinal
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Figure A—19. Narrow-Band Spectrum Analysis — Mid Car, Vertical
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Figure A—22. Narrow-Band Spectrum Analysis — End Car, Lateral
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Figure A—23. Narrow-Band Spectrum Analysis — End Car, Longitudinal
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Figure A—-24. Narrow-Band Spectrum Analysis — Mid Car, Vertical
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Figure A—26. Narrow-Band Spectrum Analysis — End Car, Vertical
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Figure A—27. Narrow-Band Spectrum Analysis — End Car, Lateral
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Figure A—31. Narrow-Band Spectrum Analysis — End Car, Vertical
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Figure A—33. Narrow-Band Spectrum Analysis — End Car, Longitudinal
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Figure A—34. Narrow-Band Spectrum Analysis — Mid Car, Vertical
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Figure A—36. Narrow-Band Spectrum Analysis — End Car, Vertical
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Figure A—38. Narrow-Band Spectrum Analysis — End Car, Longitudinal
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Figure A—39. Narrow-Band Spectrum Analysis — Mid Car, Vertical
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Figure A—42. Narrow-Band Spectrum Analysis — End Car, Vertical
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Figure A—43. Narrow-Band Spectrum Analysis — End Car, Lateral
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Figure A—44. Narrow-Band Spectrum Analysis — End 'Car, Longitudinal
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Figure A—45. Narrow-Band Spectrum Analysis — Mid Car, Vertical
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Figure A—46. Narrow-Band Spectrum Analyéis — Mid Car, Lateral
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Figure A—47. Narrow-Band Spectrum Analysis — Mid Car, Longitudinal
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Figure A—48. Narrow-Band Spectrum Analysis — End Car, Vertical
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Figure A—49. Narrow-Band Spectrum Analysis — End Car, Lateral
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Figure A—51. Narrow-Band Spectrum Analysis — Mid Car, Viertical
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Figure A—52. Narrow-Band Spectrurn Analysis — Mid Car, Lateral
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Figure A—53. Narrow-Band Spectrum Analysis — Mid Car, Longitudinal
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Figure A—54. Narrow-Bsnd Spectrum Analysis — End Car, Vertical
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Figure A—55. Narrow-Band Spectrum Analysis — End Car, Lateral
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Figure A—58. Narrow-Band Spectrum Analysis — Mid Car, Laters!
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Figure A—59. NarroW-Band Spectrum Analysis — Mid Car, Longitudinal
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Figure A—62, Narrow-Band Spectrum Analysis — End Cer, Longitudinal
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Figure A—63. Narrow-Band Spectrum Analysis — Mid Car, Vertical
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Figure A—64. Narrow-Band Spectrum Analysis — Mid Car, Lateral
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Figure A—65. Narrow-Band Spectrum Anélysis — Mid Car, Longitudinal
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